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Abstract
The mathematical limits for the percolation of rigid and floppy clusters throughout continuous
networks are considered. Results are compared to the previous prediction of Thorpe based on
the assumption that the threshold condition is the equality of degrees of freedom and the
number of constraints. It is demonstrated that, in two-dimensional systems, the thresholds
values predicted here and in the Thorpe model are relatively close. Our investigation
demonstrates that, in 3D, there is a range of strong bond concentrations in which both floppy
and rigid clusters percolate simultaneously. Depending on the particular property, either the
rigid or the floppy cluster plays the key role. This explains the existence of solid electrolytes.
They are solid because of the percolating rigid skeleton and at the same time have high
conductivity controlled by the floppy cluster that also percolates.

1. Introduction

A realistic description of the structure of disordered systems
is often obtained in the frameworks of models of continuous
random networks. A fruitful idea how to treat the transition
from floppy to rigid networks was introduced by Thorpe [1, 2]
and Phillips [3, 4]. Each node of the network can have Z bonds.
However, a part of them are broken (or dangling). The role
of each node depends on the number of dangling bonds. Up
to now there is no mathematical prediction of the percolation
threshold. Instead, the idea of Thorpe and Phillips [1–4] is
used. According to this, which we call here the ‘physical’
idea, the threshold appears when the number of degrees of
freedom of building units of the network becomes equal to
the number of constraints imposed on it. The length of each
bond imposes 1/2 constraint per node. Therefore a node with
Z non-dangling bonds has Z/2 length constraints. Also the
fixed angles between the bonds belonging to the same node
impose constraints. If a node has Z bonds the number of
angular constraints is 2Z − 3. The degrees of freedom of
a node are equal to the dimension � of the space. Since
every constraint disables one degree of freedom, all degrees of
freedom are disabled [1–4] when the number of non-dangling
bonds satisfies the equation � = Z/2 + 2Z − 3. In this way
the threshold condition for three-dimensional space becomes
Z = 2.4. This is a ‘physical’ approach to the otherwise pure
mathematical problem of a special kind of percolation. The
aim of the present paper is to develop a mathematical approach
and to compare our results with that of the physical model.

2. The model

We consider a �-dimensional network with coordination
number Z . A given part 0 � f � 1 of the bonds is
strong while a fraction 1 − f of the bonds are dangling.
When the concentration of the non-dangling bonds exceeds the
threshold value of frigid a ‘rigid’ cluster percolates throughout
the network. To determine frigid we consider the concentration
Qn of lattice nodes with n ‘non-broken’ bonds. This is given by
the binomial distribution function, specifying that the number
of times, n, an event occurs in Z independent trials is given
according to

Qn = Z !
n!(Z − n)! (1 − f )Z−n f n . (1)

If the number, n, of non-dangling bonds of a given node
exceeds a given critical value M , (i.e. if n � M) this node
is ‘rigid’; otherwise it is ‘floppy’. To simplify the problem, in
the following we assume that the value of M is always equal to
the dimensionality of the space �. The concentration Q(�) of
all ‘rigid’ nodes is given by the following sum:

Q(�) =
Z∑

n=M

Z !
n!(Z − n)! (1 − f )Z−n f n . (2)

The ‘rigid’ clusters will percolate if their concentration exceeds
the bond percolation threshold Pc, i.e. if

Q(�) � Pc. (3)
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Table 1. Rigid and floppy threshold limits in dependence on the
coordination number Z .

� Z Pc ffloppy frigid Nrigid Nfloppy

2 4 0.5 0.614 0.614 2.457 2.457
3 4 0.375 0.54 0.685 2.74 2.16
3 6 0.25 0.297 0.553 3.319 1.783
3 8 0.1875 0.193 0.47 3.76 1.546
3 12 0.125 0.105 0.367 4.402 1.265

There are (see, for instance, [5]) a number of estimations of Pc.
Here we use the formula

Pc = d

(� − 1)Z
. (4)

The critical value of frigid is obtained by combining
equations (2)–(4):

Z∑

n=�

Z !
n!(Z − n)! (1 − frigid)

Z−n f n
rigid = �

(� − 1)Z
. (5)

A tetragonal network, Z = 4, that spreads in three-
dimensional space, � = 3, is a good example for silicate glass-
forming melts. In this particular case equation (5) transforms
to: 4(1 − frigid) f 3

rigid + f 4
rigid = 0.5 or frigid = 0.685. Since the

condition that the node is floppy is n < � the critical fraction
of bonds ffloppy below which the floppy cluster percolates
throughout the system is given by an expression that is quite
similar to equation (5), with only different limits of summation:

�−1∑

n=0

Z !
n!(Z − n)! (1 − ffloppy)

Z−n f n
floppy = �

(� − 1)Z
. (6)

In two-dimensional systems ffloppy = frigid. Therefore,
there is a sharp transition from the floppy to rigid state. The
values of ffloppy and frigid, together with the Pc value, are
summarized in table 1 in dependence on the coordination
number Z and on the space dimension �. The columns labeled
Nrigid = Z frigid and Nfloppy = Z ffloppy give the threshold values
of the average number N of bonds per node for the percolation
of rigid (respectively floppy) clusters. For Z = 4 and � = 2
the critical value of N = 2.457 is close to the value of 2.4
predicted by the degrees of freedom model [1–4].

3. Results and discussion

A remarkable result is that the regions in which rigid clusters
and floppy clusters percolate are overlapping. In other words,
there is a range of f values at which both rigid and floppy
clusters can percolate simultaneously. Although the range of
overlapping increases with coordination number Z , the 2.4
limit obtained by the ‘physical’ approach remains close to the
average value as illustrated in figure 1. The overlapping effect
could be the reason why some material properties are well
explained by the rigidity model while other properties of the
same materials behave in a different manner. One and the same
structure could behave as rigid with respect to some properties
and floppy with respect to other properties. The mechanical
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Figure 1. Dependence of the critical bond number N on coordination
number Z : solid points are for the limits of the floppy cluster (above
this range only rigid clusters percolate); open points are the limits of
the rigid cluster (below this limit only floppy clusters percolate).

(This figure is in colour only in the electronic version)

properties depend very much on whether a rigid skeleton
percolates throughout the system. Therefore we expect that
stiffness, Young’s modulus, velocity of sound propagation, etc,
depend on the possibility of a rigid cluster to percolate. On
the other hand, for ion conductivity, as well as for nucleation
and crystallization processes, the percolation of a floppy cluster
is most important. This can explain the existence of solid
electrolytes. They are formed in the overlapping region where
materials behave like solids, due to percolation of the rigid
cluster, but can conduct due to the simultaneous percolation
of the floppy cluster.

A similar approach could be applied to describe the
properties of the oil fields. They are rigid because the pumice-
like stones create a rigid skeleton and at the same time the oil
can flow through.

Oxide glasses are typical representatives of systems that
could be described by the rigid networks model. Silicate
glasses create 3D networks of tetrahedral Si connected with
oxygen bridges. The coordination number Z = 4 explains why
the floppy/rigid transition is observed in a relatively narrow
region near 2.4. The network rigidity depends on the number of
covalent bridges between the network formers. Therefore, the
concentration of network formers determines the composition
limits of the appearance of solid electrolytes. As seen from
figure 1 the way to widen the range of the possible appearance
of solid electrolytes is by increasing the coordination number.

It is remarkable that more than one cluster can percolate
simultaneously in high dimensional spaces. This could give
a background to consider, in future, the dimensionality of
the space of social contacts. In countries governed by non-
democratic regimes only one party spreads nationwide. The
situation with religions is similar. This means that the imposed
restrictions make the space of social contacts two-dimensional.
The number of parties that percolate throughout the country
increases when restrictive rules are removed. Thus, the space
of contacts in a democratic society becomes three- or higher-
dimensional.
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4. Conclusions

It was demonstrated that, for three-dimensional systems, there
are two separate thresholds one for rigid clusters and another
for the floppy one. There is a range where rigid and floppy
clusters can percolate simultaneously. The average number of
bonds in the middle of the overlapping region is close to the
Thorpe and Phillips limit of 2.4.
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